On Total Ω-continuity, Strong Ω-continuity and Contra Ω-continuity by N. Rajesh

نویسنده

  • N. RAJESH
چکیده

In this paper, ω-closed sets and ω-open sets are used to define and investigate a new class of functions. Relationships between this new class and other classes of functions are established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute Continuity between the Surface Measure and Harmonic Measure Implies Rectifiability

In the present paper we prove that for any open connected set Ω ⊂ R, n ≥ 1, and any E ⊂ ∂Ω with 0 < H(E) < ∞ absolute continuity of the harmonic measure ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable. CONTENTS

متن کامل

On some sharp conditions for lower semicontinuity in L

Let Ω be an open set of R and let f : Ω × R × R be a nonnegative continuous function, convex with respect to ξ ∈ R. Following the well known theory originated by Serrin [14] in 1961, we deal with the lower semicontinuity of the integral F (u,Ω) = ∫ Ω f (x, u(x), Du(x)) dx with respect to the Lloc (Ω) strong convergence. Only recently it has been discovered that dependence of f (x, s, ξ) on the ...

متن کامل

Harmonic Measure Is Rectifiable If It Is Absolutely Continuous with Respect to the Co-dimension One Hausdorff Measure

In the present paper we sketch the proof of the fact that for any open connected set Ω ⊂ Rn+1, n ≥ 1, and any E ⊂ ∂Ω with 0 < H(E) < ∞, absolute continuity of the harmonic measure ω with respect to the Hausdorff measure on E implies that ω|E is rectifiable.

متن کامل

14.381 F13 Recitation 1 notes: Modes of Convergence

Proof. (⇒) Let Ω0 = {ω : limn Xn(ω) = X(ω)}. Suppose P (Ω0) = 1. Let > 0 be given. →∞ Let Am = ∩k=m{|Xk − X| ≤ }. Then Am ⊂ Am+1 ∀m and limm P (Am) = P (∪m=1Am) by →∞ continuity of probability measure. For each ω0, there exists m(ω0) such that |Xk(ω0)−X(ω0)| ≤ for all k ≥ m(ω0). Therefore, ∀ω0 ∈ Ω0, ω0 ∈ Am for some m and we can conclude that Ω0 ⊂ ∪m=1Am and 1 = P (Ω0) ≤ P (∪m=1Am) = limm P (A ...

متن کامل

Double Sine Series and Higher Order Lipschitz Classes of Functions (communicated by Hüseyin Bor)

Let ω(h, k) be a modulus of continuity, that is, ω(h, k) is a continuous function on the square [0, 2π] × [0, 2π], nondecreasing in each variable, and possessing the following properties: ω(0, 0) = 0, ω(t1 + t2, t3) ≤ ω(t1, t3) + ω(t2, t3), ω(t1, t2 + t3) ≤ ω(t1, t2) + ω(t1, t3). Yu ([3]) introduced the following classes of functions: HH := {f(x, y) : ‖f(x, y)− f(x+ h, y)− f(x, y + k) + f(x+ h,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007